4,954 research outputs found

    Decoherence in a Two Slit Diffraction Experiment with Massive Particles

    Full text link
    Matter-wave interferometry has been largely studied in the last few years. Usually, the main problem in the analysis of the diffraction experiments is to establish the causes for the loss of coherence observed in the interference pattern. In this work, we use different type of environmental couplings to model a two slit diffraction experiment with massive particles. For each model, we study the effects of decoherence on the interference pattern and define a visibility function that measures the loss of contrast of the interference fringes on a distant screen. Finally, we apply our results to the experimental reported data on massive particles C70C_{70}.Comment: 6 pages, 3 figure

    The effect of concurrent geometry and roughness in interacting surfaces

    Full text link
    We study the interaction energy between two surfaces, one of them flat, the other describable as the composition of a small-amplitude corrugation and a slightly curved, smooth surface. The corrugation, represented by a spatially random variable, involves Fourier wavelengths shorter than the (local) curvature radii of the smooth component of the surface. After averaging the interaction energy over the corrugation distribution, we obtain an expression which only depends on the smooth component. We then approximate that functional by means of a derivative expansion, calculating explicitly the leading and next-to-leading order terms in that approximation scheme. We analyze the resulting interplay between shape and roughness corrections for some specific corrugation models in the cases of electrostatic and Casimir interactions.Comment: 14 pages, 3 figure

    Vacuum fluctuations and generalized boundary conditions

    Get PDF
    We present a study of the static and dynamical Casimir effects for a quantum field theory satisfying generalized Robin boundary condition, of a kind that arises naturally within the context of quantum circuits. Since those conditions may also be relevant to measurements of the dynamical Casimir effect, we evaluate their role in the concrete example of a real scalar field in 1+1 dimensions, a system which has a well-known mechanical analogue involving a loaded string.Comment: 8 pages, 1 figur

    Derivative expansion for the Casimir effect at zero and finite temperature in d+1d+1 dimensions

    Full text link
    We apply the derivative expansion approach to the Casimir effect for a real scalar field in dd spatial dimensions, to calculate the next to leading order term in that expansion, namely, the first correction to the proximity force approximation. The field satisfies either Dirichlet or Neumann boundary conditions on two static mirrors, one of them flat and the other gently curved. We show that, for Dirichlet boundary conditions, the next to leading order term in the Casimir energy is of quadratic order in derivatives, regardless of the number of dimensions. Therefore it is local, and determined by a single coefficient. We show that the same holds true, if d2d \neq 2, for a field which satisfies Neumann conditions. When d=2d=2, the next to leading order term becomes nonlocal in coordinate space, a manifestation of the existence of a gapless excitation (which do exist also for d>2d> 2, but produce sub-leading terms). We also consider a derivative expansion approach including thermal fluctuations of the scalar field. We show that, for Dirichlet mirrors, the next to leading order term in the free energy is also local for any temperature TT. Besides, it interpolates between the proper limits: when T0T \to 0 it tends to the one we had calculated for the Casimir energy in dd dimensions, while for TT \to \infty it corresponds to the one for a theory in d1d-1 dimensions, because of the expected dimensional reduction at high temperatures. For Neumann mirrors in d=3d=3, we find a nonlocal next to leading order term for any T>0T>0.Comment: 18 pages, 6 figures. Version to appear in Phys. Rev.

    Inertial forces and dissipation on accelerated boundaries

    Full text link
    We study dissipative effects due to inertial forces acting on matter fields confined to accelerated boundaries in 1+11+1, 2+12+1, and 3+13+1 dimensions. These matter fields describe the internal degrees of freedom of `mirrors' and impose, on the surfaces where they are defined, boundary conditions on a fluctuating `vacuum' field. We construct different models, involving either scalar or Dirac matter fields coupled to a vacuum scalar field, and use effective action techniques to calculate the strength of dissipation. In the case of massless Dirac fields, the results could be used to describe the inertial forces on an accelerated graphene sheet.Comment: 7 pages, no figure

    The derivative expansion approach to the interaction between close surfaces

    Full text link
    The derivative expansion approach to the calculation of the interaction between two surfaces, is a generalization of the proximity force approximation, a technique of widespread use in different areas of physics. The derivative expansion has so far been applied to seemingly unrelated problems in different areas; it is our principal aim here to present the approach in its full generality. To that end, we introduce an unified setting, which is independent of any particular application, provide a formal derivation of the derivative expansion in that general setting, and study some its properties. With a view on the possible application of the derivative expansion to other areas, like nuclear and colloidal physics, we also discuss the relation between the derivative expansion and some time-honoured uncontrolled approximations used in those contexts. By putting them under similar terms as the derivative expansion, we believe that the path is open to the calculation of next to leading order corrections also for those contexts. We also review some results obtained within the derivative expansion, by applying it to different concrete examples and highlighting some important points.Comment: Minor changes, version to appear in Phys. Rev.

    Casimir Free Energy at High Temperatures: Grounded vs Isolated Conductors

    Full text link
    We evaluate the difference between the Casimir free energies corresponding to either grounded or isolated perfect conductors, at high temperatures. We show that a general and simple expression for that difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors. For the case of close conductors, we provide approximate expressions for that difference, by evaluating the capacitance matrix using the proximity force approximation. Since the high-temperature limit for the Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the Casimir force in the presence of real materials.Comment: 7 page

    Derivative expansion for the electromagnetic and Neumann Casimir effects in 2+12+1 dimensions with imperfect mirrors

    Get PDF
    We calculate the Casimir interaction energy in d=2d=2 spatial dimensions between two (zero-width) mirrors, one flat, and the other slightly curved, upon which {\em imperfect\/} conductor boundary conditions are imposed for an Electromagnetic (EM) field. Our main result is a second-order Derivative Expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a non-analyticity beyond the leading-order term in the DE, when approaching the limit of perfectly-conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold also true for the scalar field mode

    Onset of classical behaviour after a phase transition

    Full text link
    We analyze the onset of classical behaviour in a scalar field after a continuous phase transition, in which the system-field, the long wavelength order parameter of the model, interacts with an environment of its own short-wavelength modes. We compute the decoherence time for the system-field modes from the master equation and compare it with the other time scales of the model. Within our approximations the decoherence time is in general the smallest dynamical time scale. Demanding diagonalisation of the decoherence functional produces identical results. The inclusion of other environmental fields makes diagonalisation occur even earlier.Comment: Seven pages, no figures. Contributed talk to the Second International Workshop DICE2004, Piombino, Italy. To be published in the Brazilian Journal of Physic
    corecore